Copied to
clipboard

G = C2×C32⋊C9order 162 = 2·34

Direct product of C2 and C32⋊C9

direct product, metabelian, nilpotent (class 2), monomial, 3-elementary

Aliases: C2×C32⋊C9, C6.1He3, C322C18, C33.3C6, C6.13- 1+2, (C3×C6)⋊C9, (C3×C9)⋊8C6, (C3×C18)⋊1C3, C6.1(C3×C9), C3.1(C3×C18), C3.1(C2×He3), C32.9(C3×C6), (C3×C6).6C32, (C32×C6).1C3, C3.1(C2×3- 1+2), SmallGroup(162,24)

Series: Derived Chief Lower central Upper central

C1C3 — C2×C32⋊C9
C1C3C32C33C32⋊C9 — C2×C32⋊C9
C1C3 — C2×C32⋊C9
C1C3×C6 — C2×C32⋊C9

Generators and relations for C2×C32⋊C9
 G = < a,b,c,d | a2=b3=c3=d9=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc-1, cd=dc >

3C3
3C3
3C3
3C6
3C6
3C6
3C32
3C32
3C32
3C9
3C9
3C9
3C3×C6
3C18
3C3×C6
3C3×C6
3C18
3C18

Smallest permutation representation of C2×C32⋊C9
On 54 points
Generators in S54
(1 51)(2 52)(3 53)(4 54)(5 46)(6 47)(7 48)(8 49)(9 50)(10 34)(11 35)(12 36)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(19 43)(20 44)(21 45)(22 37)(23 38)(24 39)(25 40)(26 41)(27 42)
(1 4 7)(2 31 42)(3 40 35)(5 34 45)(6 43 29)(8 28 39)(9 37 32)(10 21 46)(11 53 25)(12 15 18)(13 24 49)(14 47 19)(16 27 52)(17 50 22)(20 23 26)(30 33 36)(38 41 44)(48 51 54)
(1 44 36)(2 45 28)(3 37 29)(4 38 30)(5 39 31)(6 40 32)(7 41 33)(8 42 34)(9 43 35)(10 49 27)(11 50 19)(12 51 20)(13 52 21)(14 53 22)(15 54 23)(16 46 24)(17 47 25)(18 48 26)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,51)(2,52)(3,53)(4,54)(5,46)(6,47)(7,48)(8,49)(9,50)(10,34)(11,35)(12,36)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,43)(20,44)(21,45)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42), (1,4,7)(2,31,42)(3,40,35)(5,34,45)(6,43,29)(8,28,39)(9,37,32)(10,21,46)(11,53,25)(12,15,18)(13,24,49)(14,47,19)(16,27,52)(17,50,22)(20,23,26)(30,33,36)(38,41,44)(48,51,54), (1,44,36)(2,45,28)(3,37,29)(4,38,30)(5,39,31)(6,40,32)(7,41,33)(8,42,34)(9,43,35)(10,49,27)(11,50,19)(12,51,20)(13,52,21)(14,53,22)(15,54,23)(16,46,24)(17,47,25)(18,48,26), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,51)(2,52)(3,53)(4,54)(5,46)(6,47)(7,48)(8,49)(9,50)(10,34)(11,35)(12,36)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,43)(20,44)(21,45)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42), (1,4,7)(2,31,42)(3,40,35)(5,34,45)(6,43,29)(8,28,39)(9,37,32)(10,21,46)(11,53,25)(12,15,18)(13,24,49)(14,47,19)(16,27,52)(17,50,22)(20,23,26)(30,33,36)(38,41,44)(48,51,54), (1,44,36)(2,45,28)(3,37,29)(4,38,30)(5,39,31)(6,40,32)(7,41,33)(8,42,34)(9,43,35)(10,49,27)(11,50,19)(12,51,20)(13,52,21)(14,53,22)(15,54,23)(16,46,24)(17,47,25)(18,48,26), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,51),(2,52),(3,53),(4,54),(5,46),(6,47),(7,48),(8,49),(9,50),(10,34),(11,35),(12,36),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(19,43),(20,44),(21,45),(22,37),(23,38),(24,39),(25,40),(26,41),(27,42)], [(1,4,7),(2,31,42),(3,40,35),(5,34,45),(6,43,29),(8,28,39),(9,37,32),(10,21,46),(11,53,25),(12,15,18),(13,24,49),(14,47,19),(16,27,52),(17,50,22),(20,23,26),(30,33,36),(38,41,44),(48,51,54)], [(1,44,36),(2,45,28),(3,37,29),(4,38,30),(5,39,31),(6,40,32),(7,41,33),(8,42,34),(9,43,35),(10,49,27),(11,50,19),(12,51,20),(13,52,21),(14,53,22),(15,54,23),(16,46,24),(17,47,25),(18,48,26)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)]])

C2×C32⋊C9 is a maximal subgroup of   C32⋊C36  C32⋊Dic9  C322Dic9  C18×He3  C18×3- 1+2

66 conjugacy classes

class 1  2 3A···3H3I···3N6A···6H6I···6N9A···9R18A···18R
order123···33···36···66···69···918···18
size111···13···31···13···33···33···3

66 irreducible representations

dim111111113333
type++
imageC1C2C3C3C6C6C9C18He33- 1+2C2×He3C2×3- 1+2
kernelC2×C32⋊C9C32⋊C9C3×C18C32×C6C3×C9C33C3×C6C32C6C6C3C3
# reps11626218182424

Matrix representation of C2×C32⋊C9 in GL4(𝔽19) generated by

1000
01800
00180
00018
,
1000
01012
00111
0007
,
1000
01100
00110
00011
,
9000
01210
0800
0607
G:=sub<GL(4,GF(19))| [1,0,0,0,0,18,0,0,0,0,18,0,0,0,0,18],[1,0,0,0,0,1,0,0,0,0,11,0,0,12,1,7],[1,0,0,0,0,11,0,0,0,0,11,0,0,0,0,11],[9,0,0,0,0,12,8,6,0,1,0,0,0,0,0,7] >;

C2×C32⋊C9 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes C_9
% in TeX

G:=Group("C2xC3^2:C9");
// GroupNames label

G:=SmallGroup(162,24);
// by ID

G=gap.SmallGroup(162,24);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-3,276,187]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^3=c^3=d^9=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^-1,c*d=d*c>;
// generators/relations

Export

Subgroup lattice of C2×C32⋊C9 in TeX

׿
×
𝔽